Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Transplantation ; 106(8): 1615-1621, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2252476

ABSTRACT

BACKGROUND: Elderly kidney transplant recipients (KTRs) represent almost one third of the total kidney transplant population. These patients have a very high coronavirus disease 2019 (COVID-19)-related mortality, whereas their response to COVID-19 vaccination is impaired. Finding ways to improve the COVID-19 vaccination response in this vulnerable population is of uttermost importance. METHODS: In the OPTIMIZE trial, we randomly assign elderly KTRs to an immunosuppressive regimen with standard-exposure calcineurin inhibitor (CNI), mycophenolate mofetil, and prednisolone or an adapted regimen with low dose CNI, everolimus, and prednisolone. In this substudy, we measured the humoral response after 2 (N = 32) and 3 (N = 22) COVID-19 mRNA vaccinations and the cellular response (N = 15) after 2 vaccinations. RESULTS: . The seroconversion rates of elderly KTRs on a standard immunosuppressive regimen were only 13% and 38% after 2 and 3 vaccinations, respectively, whereas the response rates of KTRs on the everolimus regimen were significantly higher at 56% ( P = 0.009) and 100% ( P = 0.006). Levels of severe acute respiratory syndrome coronaVirus 2 IgG antibodies were significantly higher at both time points in the everolimus group ( P = 0.004 and P < 0.001). There were no differences in cellular response after vaccination. CONCLUSIONS: An immunosuppressive regimen without mycophenolate mofetil, a lower CNI dose, and usage of everolimus is associated with a higher humoral response rate after COVID-19 vaccination in elderly KTRs after transplantation. This encouraging finding should be investigated in larger cohorts, including transplant recipients of all ages.


Subject(s)
COVID-19 Vaccines , Kidney Transplantation , Transplant Recipients , Aged , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Calcineurin Inhibitors , Everolimus/therapeutic use , Humans , Immunity, Humoral , Immunosuppressive Agents/therapeutic use , Kidney Transplantation/adverse effects , Mycophenolic Acid , Prednisolone , Vaccination
3.
Am J Transplant ; 21(12): 3936-3945, 2021 12.
Article in English | MEDLINE | ID: covidwho-1294932

ABSTRACT

Kidney transplant recipients (KTR) may be at increased risk of adverse COVID-19 outcomes, due to prevalent comorbidities and immunosuppressed status. Given the global differences in COVID-19 policies and treatments, a robust assessment of all evidence is necessary to evaluate the clinical course of COVID-19 in KTR. Studies on mortality and acute kidney injury (AKI) in KTR in the World Health Organization COVID-19 database were systematically reviewed. We selected studies published between March 2020 and January 18th 2021, including at least five KTR with COVID-19. Random-effects meta-analyses were performed to calculate overall proportions, including 95% confidence intervals (95% CI). Subgroup analyses were performed on time of submission, geographical region, sex, age, time after transplantation, comorbidities, and treatments. We included 74 studies with 5559 KTR with COVID-19 (64.0% males, mean age 58.2 years, mean 73 months after transplantation) in total. The risk of mortality, 23% (95% CI: 21%-27%), and AKI, 50% (95% CI: 44%-56%), is high among KTR with COVID-19, regardless of sex, age and comorbidities, underlining the call to accelerate vaccination programs for KTR. Given the suboptimal reporting across the identified studies, we urge researchers to consistently report anthropometrics, kidney function at baseline and discharge, (changes in) immunosuppressive therapy, AKI, and renal outcome among KTR.


Subject(s)
COVID-19 , Kidney Transplantation , Female , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , SARS-CoV-2 , Transplant Recipients
4.
Crit Care ; 25(1): 202, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1266500

ABSTRACT

BACKGROUND: The mechanisms driving acute kidney injury (AKI) in critically ill COVID-19 patients are unclear. We collected kidney biopsies from COVID-19 AKI patients within 30 min after death in order to examine the histopathology and perform mRNA expression analysis of genes associated with renal injury. METHODS: This study involved histopathology and mRNA analyses of postmortem kidney biopsies collected from patients with COVID-19 (n = 6) and bacterial sepsis (n = 27). Normal control renal tissue was obtained from patients undergoing total nephrectomy (n = 12). The mean length of ICU admission-to-biopsy was 30 days for COVID-19 and 3-4 days for bacterial sepsis patients. RESULTS: We did not detect SARS-CoV-2 RNA in kidney biopsies from COVID-19-AKI patients yet lung tissue from the same patients was PCR positive. Extensive acute tubular necrosis (ATN) and peritubular thrombi were distinct histopathology features of COVID-19-AKI compared to bacterial sepsis-AKI. ACE2 mRNA levels in both COVID-19 (fold change 0.42, p = 0.0002) and bacterial sepsis patients (fold change 0.24, p < 0.0001) were low compared to control. The mRNA levels of injury markers NGAL and KIM-1 were unaltered compared to control tissue but increased in sepsis-AKI patients. Markers for inflammation and endothelial activation were unaltered in COVID-19 suggesting a lack of renal inflammation. Renal mRNA levels of endothelial integrity markers CD31, PV-1 and VE-Cadherin did not differ from control individuals yet were increased in bacterial sepsis patients (CD31 fold change 2.3, p = 0.0006, PV-1 fold change 1.5, p = 0.008). Angiopoietin-1 mRNA levels were downregulated in renal tissue from both COVID-19 (fold change 0.27, p < 0.0001) and bacterial sepsis patients (fold change 0.67, p < 0.0001) compared to controls. Moreover, low Tie2 mRNA expression (fold change 0.33, p = 0.037) and a disturbed VEGFR2/VEGFR3 ratio (fold change 0.09, p < 0.0001) suggest decreased microvascular flow in COVID-19. CONCLUSIONS: In a small cohort of postmortem kidney biopsies from COVID-19 patients, we observed distinct histopathological and gene expression profiles between COVID-19-AKI and bacterial sepsis-AKI. COVID-19 was associated with more severe ATN and microvascular thrombosis coupled with decreased microvascular flow, yet minimal inflammation. Further studies are required to determine whether these observations are a result of true pathophysiological differences or related to the timing of biopsy after disease onset.


Subject(s)
COVID-19/pathology , Gene Expression/genetics , Kidney/pathology , Kidney/physiopathology , Sepsis/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/physiopathology , Adult , Aged , Aged, 80 and over , Analysis of Variance , COVID-19/genetics , COVID-19/physiopathology , Critical Illness/therapy , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Sepsis/genetics , Sepsis/physiopathology , Simplified Acute Physiology Score
5.
Crit Care Explor ; 2(10): e0258, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-900570

ABSTRACT

OBJECTIVES: Optimizing continuous renal replacement therapy circuit survival in coronavirus disease 2019 patients admitted to the ICU. DESIGN: Single-center prospective observational cohort study. SETTING: Tertiary academic teaching ICU. PATIENTS: Between March 19, 2020, and May 18, 2020, 11 out of 101 coronavirus disease 2019 patients were treated with continuous renal replacement therapy comprising 127 continuous renal replacement therapy days. INTERVENTIONS: A nonrandomized observational comparison of circuit anticoagulation modalities using standard regional citrate anticoagulation, continuous IV heparin anticoagulation, or the combination of regional citrate anticoagulation with either continuous IV heparin or therapeutic dose nadroparin. MEASUREMENTS AND MAIN RESULTS: Circuit patency was shorter than 24 hours using standard regional citrate anticoagulation or continuous IV heparin anticoagulation. Median circuit survival increased with at least 165% when the combination of regional citrate anticoagulation with either continuous IV heparin or therapeutic dose nadroparin was applied. CONCLUSIONS: Continuous renal replacement therapy circuit patency is diminished in coronavirus disease 2019 ICU patients. Combining regional citrate anticoagulation with either continuous IV heparin or therapeutic dose nadroparin increases filter survival as compared with regional citrate anticoagulation alone in this nonrandomized observational study.

6.
Am J Kidney Dis ; 76(3): 431-435, 2020 09.
Article in English | MEDLINE | ID: covidwho-436397

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a contagious life-threatening infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent findings indicate an increased risk for acute kidney injury during COVID-19 infection. The pathophysiologic mechanisms leading to acute kidney injury in COVID-19 infection are unclear but may include direct cytopathic effects of the virus on kidney tubular and endothelial cells, indirect damage caused by virus-induced cytokine release, and kidney hypoperfusion due to a restrictive fluid strategy. In this report of 2 cases, we propose an additional pathophysiologic mechanism. We describe 2 cases in which patients with COVID-19 infection developed a decrease in kidney function due to kidney infarction. These patients did not have atrial fibrillation. One of these patients was treated with therapeutic doses of low-molecular-weight heparin, after which no further deterioration in kidney function was observed. Our findings implicate that the differential diagnosis of acute kidney injury in COVID-19-infected patients should include kidney infarction, which may have important preventive and therapeutic implications.


Subject(s)
Acute Kidney Injury/diagnostic imaging , Betacoronavirus , Coronavirus Infections/diagnostic imaging , Infarction/diagnostic imaging , Kidney/blood supply , Kidney/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Diagnosis, Differential , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Infarction/drug therapy , Infarction/etiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL